Flies

Flies Be Gone: Transform Your Space with Our Top-Rated Bug Zapper

Tired of pesky flies ruining your space and bothering you? Say goodbye to these buzzing nuisances with our top-rated bug zapper, designed to rid your area of those unwanted guests swiftly and efficiently. No more need for fly swatters or constant swatting – our bug zapper will have your space fly-free in no time. Join us as we explore the world of bug elimination and reclaim your peace of mind from these bothersome insects.

The Pesky Fly Problem

Understanding Why Flies Are More Than Just Annoying

Flies are often seen as mere nuisances, but their impact goes beyond the annoyance factor. These insects are not only irritants with their constant buzzing and their tendency to land on everything, but they also pose health risks. Flies are known carriers of bacteria and pathogens due to their attraction to decaying matter and waste. When they land on your food or surfaces in your home, they can transfer these harmful organisms, potentially leading to illnesses such as food poisoning. Moreover, a fly infestation can signify deeper sanitation issues that need to be addressed. Therefore, controlling the fly population in your environment is crucial not just for comfort, but for your health and well-being, making the use of effective tools like a bug zapper not just a convenience, but a necessity.

The Limitations of Traditional Fly Swatters

Traditional fly swatters might seem like a simple solution to your fly problem, but they come with limitations. The most obvious is the effort required; it can be frustrating and time-consuming to chase flies around your space. There’s also the matter of precision and agility—flies are quick and often evade the swat, making it a less effective method. Furthermore, using a fly swatter can be quite unsanitary. When you swat a fly, it can leave behind germs on surfaces, not to mention the unpleasant task of cleaning up the remnants. In addition, fly swatters don’t provide a long-term solution. They can’t prevent new flies from entering your space, and they certainly don’t address the root of the infestation. For those seeking a more efficient and hygienic way to deal with flies, a bug zapper offers a significant upgrade over the classic fly swatter.

Embracing the Power of the Bug Zapper

How the Bug Zapper Transforms Your Space

Introducing a bug zapper into your space can significantly alter your environment for the better. Unlike fly swatters, bug zappers work continuously to eliminate flies, requiring minimal effort from you. They use light to attract insects and then eliminate them quickly and cleanly, without the mess associated with traditional methods. This not only reduces the fly population but also decreases the risk of disease transmission in your home or business. With a bug zapper, you can enjoy outdoor activities or relax indoors without the constant buzzing and annoyance of flies. Moreover, it acts as a deterrent, preventing new swarms from settling in your area. The result is a more hygienic, comfortable, and enjoyable living or working environment, free from the stress and distraction that flies can cause. A bug zapper is a smart, effective way to maintain a fly-free zone.

Why Our Bug Zapper is Top-Rated

Our bug zapper earns its top-rated status through its superior design and performance. It stands out in the market due to its robust construction and the efficiency with which it attracts and eliminates flies. What makes our model particularly appealing is its ease of use; it’s simple to set up and requires very little maintenance. Its durability means it withstands the test of time, even in outdoor conditions. Additionally, our bug zapper is designed with safety in mind, featuring a protective grid to prevent accidental contact with the electrified parts. The quiet operation ensures it’s not disruptive, making it ideal for both residential and commercial spaces. Customer feedback often highlights the significant reduction in fly populations after installation, providing a testament to the device’s effectiveness. The combination of these features is why our customers trust our bug zapper to keep their spaces fly-free.

Making the Switch: From Fly Swatter to Bug Zapper

The Ease of Making the Transition

Switching from a traditional fly swatter to a modern bug zapper is a straightforward process that can bring about an immediate improvement in your quality of life. The transition is as simple as selecting a spot to place or hang the zapper, plugging it in, and letting it work its magic. Our bug zappers are designed to be intuitive and user-friendly, ensuring that anyone can easily install and operate them without hassle. There’s no need to learn complicated settings or maintenance routines. Plus, the immediate decrease in flies is noticeable, providing instant gratification and peace of mind. For those who are environmentally conscious, our bug zappers offer a more sustainable option, reducing the need for flypaper and chemical sprays. This ease of transition, coupled with the tangible benefits, makes the switch to a bug zapper an obvious choice for anyone fed up with traditional fly control methods.

Experience a Fly-Free Environment Today

Embrace the comfort of a fly-free environment by making the switch to our top-rated bug zapper today. The immediate effects of reduced fly activity can transform your living or work space into a more pleasant and hygienic area. No more distractions or concerns about food contamination—just a clean, insect-free atmosphere. Our bug zapper is not only effective but also an investment in your well-being. The simplicity of its operation means that you can enjoy the benefits without any added work. Whether you’re looking to improve your home environment or seeking a solution for your business, our bug zapper is the answer. Take action now and join the ranks of satisfied customers who’ve said farewell to the age-old struggle against flies. Experience the ease and efficiency of a modern solution and enjoy a fly-free space today.

True flies are insects of the order Diptera, the name being derived from the Greek δι- di- “two”, and πτερόν pteron “wing”. Insects of this order use only a single pair of wings to fly, the hindwings having evolved into advanced mechanosensory organs known as halteres, which act as high-speed sensors of rotational movement and allow dipterans to perform advanced aerobatics. Diptera is a large order containing an estimated 1,000,000 species including horse-flies,[a] crane flies, hoverflies and others, although only about 125,000 species have been described.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. Their wing arrangement gives them great maneuverability in flight, and claws and pads on their feet enable them to cling to smooth surfaces. Flies undergo complete metamorphosis; the eggs are laid on the larval food-source and the larvae, which lack true limbs, develop in a protected environment, often inside their food source. The pupa is a tough capsule from which the adult emerges when ready to do so; flies mostly have short lives as adults.

Diptera is one of the major insect orders and of considerable ecological and human importance. Flies are important pollinators, second only to the bees and their Hymenopteran relatives. Flies may have been among the evolutionarily earliest pollinators responsible for early plant pollination. Fruit flies are used as model organisms in research, but less benignly, mosquitoes are vectors for malaria, dengue, West Nile fever, yellow fever, encephalitis, and other infectious diseases; and houseflies, commensal with humans all over the world, spread food-borne illnesses. Flies can be annoyances especially in some parts of the world where they can occur in large numbers, buzzing and settling on the skin or eyes to bite or seek fluids. Larger flies such as tsetse flies and screwworms cause significant economic harm to cattle. Blowfly larvae, known as gentles, and other dipteran larvae, known more generally as maggots, are used as fishing bait and as food for carnivorous animals. They are also used in medicine in debridement to clean wounds.

Relationships between fly subgroups and families

The first true dipterans known are from the Middle Triassic (around 240 million years ago), and they became widespread during the Middle and Late Triassic. Modern flowering plants did not appear until the Cretaceous (around 140 million years ago), so the original dipterans must have had a different source of nutrition other than nectar. Based on the attraction of many modern fly groups to shiny droplets, it has been suggested that they may have fed on honeydew produced by sap-sucking bugs which were abundant at the time, and dipteran mouthparts are well-adapted to softening and lapping up the crusted residues. The basal clades in the Diptera include the Deuterophlebiidae and the enigmatic Nymphomyiidae. Three episodes of evolutionary radiation are thought to have occurred based on the fossil record. Many new species of lower Diptera developed in the Triassic, about 220 million years ago. Many lower Brachycera appeared in the Jurassic, some 180 million years ago. A third radiation took place among the Schizophora at the start of the Paleogene, 66 million years ago.

The phylogenetic position of Diptera has been controversial. The monophyly of holometabolous insects has long been accepted, with the main orders being established as Lepidoptera, Coleoptera, Hymenoptera and Diptera, and it is the relationships between these groups which has caused difficulties. Diptera is widely thought to be a member of Mecopterida, along with Lepidoptera (butterflies and moths), Trichoptera (caddisflies), Siphonaptera (fleas), Mecoptera (scorpionflies) and possibly Strepsiptera (twisted-wing flies). Diptera has been grouped with Siphonaptera and Mecoptera in the Antliophora, but this has not been confirmed by molecular studies.

Diptera were traditionally broken down into two suborders, Nematocera and Brachycera, distinguished by the differences in antennae. The Nematocera are identified by their elongated bodies and many-segmented, often feathery antennae as represented by mosquitoes and crane flies. The Brachycera have rounder bodies and much shorter antennae. Subsequent studies have identified the Nematocera as being non-monophyletic with modern phylogenies placing the Brachycera within grades of groups formerly placed in the Nematocera. The construction of a phylogenetic tree has been the subject of ongoing research. The following cladogram is based on the FLYTREE project.

Diversity

Flies are often abundant and are found in almost all terrestrial habitats in the world apart from Antarctica. They include many familiar insects such as house flies, blow flies, mosquitoes, gnats, black flies, midges and fruit flies. More than 150,000 have been formally described and the actual species diversity is much greater, with the flies from many parts of the world yet to be studied intensively. The suborder Nematocera include generally small, slender insects with long antennae such as mosquitoes, gnats, midges and crane-flies, while the Brachycera includes broader, more robust flies with short antennae. Many nematoceran larvae are aquatic. There are estimated to be a total of about 19,000 species of Diptera in Europe, 22,000 in the Nearctic region, 20,000 in the Afrotropical region, 23,000 in the Oriental region and 19,000 in the Australasian region. While most species have restricted distributions, a few like the housefly (Musca domestica) are cosmopolitan. Gauromydas heros (Asiloidea), with a length of up to 7 cm (2.8 in), is generally considered to be the largest fly in the world, while the smallest is Euryplatea nanaknihali, which at 0.4 mm (0.016 in) is smaller than a grain of salt.

Brachycera are ecologically very diverse, with many being predatory at the larval stage and some being parasitic. Animals parasitised include molluscs, woodlice, millipedes, insects, mammals, and amphibians. Flies are the second largest group of pollinators after the Hymenoptera (bees, wasps and relatives). In wet and colder environments flies are significantly more important as pollinators. Compared to bees, they need less food as they do not need to provision their young. Many flowers that bear low nectar and those that have evolved trap pollination depend on flies. It is thought that some of the earliest pollinators of plants may have been flies.

The greatest diversity of gall forming insects are found among the flies, principally in the family Cecidomyiidae (gall midges). Many flies (most importantly in the family Agromyzidae) lay their eggs in the mesophyll tissue of leaves with larvae feeding between the surfaces forming blisters and mines. Some families are mycophagous or fungus feeding. These include the cave dwelling Mycetophilidae (fungus gnats) whose larvae are the only diptera with bioluminescence. The Sciaridae are also fungus feeders. Some plants are pollinated by fungus feeding flies that visit fungus infected male flowers.

The larvae of Megaselia scalaris (Phoridae) are almost omnivorous and consume such substances as paint and shoe polish. The Exorista mella (Walker) fly are considered generalists and parasitoids of a variety of hosts. The larvae of the shore flies (Ephydridae) and some Chironomidae survive in extreme environments including glaciers (Diamesa sp., Chironomidae), hot springs, geysers, saline pools, sulphur pools, septic tanks and even crude oil (Helaeomyia petrolei). Adult hoverflies (Syrphidae) are well known for their mimicry and the larvae adopt diverse lifestyles including being inquiline scavengers inside the nests of social insects. Some brachycerans are agricultural pests, some bite animals and humans and suck their blood, and some transmit diseases

Anatomy and morphology

Flies are adapted for aerial movement and typically have short and streamlined bodies. The first tagma of the fly, the head, bears the eyes, the antennae, and the mouthparts (the labrum, labium, mandible, and maxilla make up the mouthparts). The second tagma, the thorax, bears the wings and contains the flight muscles on the second segment, which is greatly enlarged; the first and third segments have been reduced to collar-like structures, and the third segment bears the halteres, which help to balance the insect during flight. The third tagma is the abdomen consisting of 11 segments, some of which may be fused, and with the 3 hindmost segments modified for reproduction. Some Dipterans are mimics and can only be distinguished from their models by very careful inspection. An example of this is Spilomyia longicornis, which is a fly but mimics a vespid wasp.

Flies have a mobile head with a pair of large compound eyes on the sides of the head, and in most species, three small ocelli on the top. The compound eyes may be close together or widely separated, and in some instances are divided into a dorsal region and a ventral region, perhaps to assist in swarming behaviour. The antennae are well-developed but variable, being thread-like, feathery or comb-like in the different families. The mouthparts are adapted for piercing and sucking, as in the black flies, mosquitoes and robber flies, and for lapping and sucking as in many other groups. Female horse-flies use knife-like mandibles and maxillae to make a cross-shaped incision in the host’s skin and then lap up the blood that flows. The gut includes large diverticulae, allowing the insect to store small quantities of liquid after a meal.

For visual course control, flies’ optic flow field is analyzed by a set of motion-sensitive neurons. A subset of these neurons is thought to be involved in using the optic flow to estimate the parameters of self-motion, such as yaw, roll, and sideward translation. Other neurons are thought to be involved in analyzing the content of the visual scene itself, such as separating figures from the ground using motion parallax. The H1 neuron is responsible for detecting horizontal motion across the entire visual field of the fly, allowing the fly to generate and guide stabilizing motor corrections midflight with respect to yaw. The ocelli are concerned in the detection of changes in light intensity, enabling the fly to react swiftly to the approach of an object.

Like other insects, flies have chemoreceptors that detect smell and taste, and mechanoreceptors that respond to touch. The third segments of the antennae and the maxillary palps bear the main olfactory receptors, while the gustatory receptors are in the labium, pharynx, feet, wing margins and female genitalia, enabling flies to taste their food by walking on it. The taste receptors in females at the tip of the abdomen receive information on the suitability of a site for ovipositing. Flies that feed on blood have special sensory structures that can detect infrared emissions, and use them to home in on their hosts, and many blood-sucking flies can detect the raised concentration of carbon dioxide that occurs near large animals. Some tachinid flies (Ormiinae) which are parasitoids of bush crickets, have sound receptors to help them locate their singing hosts

Diptera have one pair of fore wings on the mesothorax and a pair of halteres, or reduced hind wings, on the metathorax. A further adaptation for flight is the reduction in number of the neural ganglia, and concentration of nerve tissue in the thorax, a feature that is most extreme in the highly derived Muscomorpha infraorder. Some species of flies are exceptional in that they are secondarily flightless. The only other order of insects bearing a single pair of true, functional wings, in addition to any form of halteres, are the Strepsiptera. In contrast to the flies, the Strepsiptera bear their halteres on the mesothorax and their flight wings on the metathorax. Each of the fly’s six legs has a typical insect structure of coxa, trochanter, femur, tibia and tarsus, with the tarsus in most instances being subdivided into five tarsomeres. At the tip of the limb is a pair of claws, and between these are cushion-like structures known as pulvilli which provide adhesion.

The abdomen shows considerable variability among members of the order. It consists of eleven segments in primitive groups and ten segments in more derived groups, the tenth and eleventh segments having fused. The last two or three segments are adapted for reproduction. Each segment is made up of a dorsal and a ventral sclerite, connected by an elastic membrane. In some females, the sclerites are rolled into a flexible, telescopic ovipositor

Flight

Flies are capable of great manoeuvrability during flight due to the presence of the halteres. These act as gyroscopic organs and are rapidly oscillated in time with the wings; they act as a balance and guidance system by providing rapid feedback to the wing-steering muscles, and flies deprived of their halteres are unable to fly. The wings and halteres move in synchrony but the amplitude of each wing beat is independent, allowing the fly to turn sideways. The wings of the fly are attached to two kinds of muscles, those used to power it and another set used for fine control.

Flies tend to fly in a straight line then make a rapid change in direction before continuing on a different straight path. The directional changes are called saccades and typically involve an angle of 90°, being achieved in 50 milliseconds. They are initiated by visual stimuli as the fly observes an object, nerves then activate steering muscles in the thorax that cause a small change in wing stroke which generate sufficient torque to turn. Detecting this within four or five wingbeats, the halteres trigger a counter-turn and the fly heads off in a new direction.

Flies have rapid reflexes that aid their escape from predators but their sustained flight speeds are low. Dolichopodid flies in the genus Condylostylus respond in less than 5 milliseconds to camera flashes by taking flight. In the past, the deer bot fly, Cephenemyia, was claimed to be one of the fastest insects on the basis of an estimate made visually by Charles Townsend in 1927. This claim, of speeds of 600 to 800 miles per hour, was regularly repeated until it was shown to be physically impossible as well as incorrect by Irving Langmuir. Langmuir suggested an estimated speed of 25 miles per hour.

Although most flies live and fly close to the ground, a few are known to fly at heights and a few like Oscinella (Chloropidae) are known to be dispersed by winds at altitudes of up to 2000 ft and over long distances. Some hover flies like Metasyrphus corollae have been known to undertake long flights in response to aphid population spurts.

Males of fly species such as Cuterebra, many hover flies, bee flies (Bombyliidae) and fruit flies (Tephritidae) maintain territories within which they engage in aerial pursuit to drive away intruding males and other species. While these territories may be held by individual males, some species, such as A. freeborni, form leks with many males aggregating in displays.[59] Some flies maintain an airspace and still others form dense swarms that maintain a stationary location with respect to landmarks. Many flies mate in flight while swarming.

Life cycle and development

Larva

In many flies, the larval stage is long and adults may have a short life. Most dipteran larvae develop in protected environments; many are aquatic and others are found in moist places such as carrion, fruit, vegetable matter, fungi and, in the case of parasitic species, inside their hosts. They tend to have thin cuticles and become desiccated if exposed to the air. Apart from the Brachycera, most dipteran larvae have sclerotinised head capsules, which may be reduced to remnant mouth hooks; the Brachycera, however, have soft, gelatinized head capsules from which the sclerites are reduced or missing. Many of these larvae retract their heads into their thorax

Some other anatomical distinction exists between the larvae of the Nematocera and the Brachycera. Especially in the Brachycera, little demarcation is seen between the thorax and abdomen, though the demarcation may be visible in many Nematocera, such as mosquitoes; in the Brachycera, the head of the larva is not clearly distinguishable from the rest of the body, and few, if any, sclerites are present. Informally, such brachyceran larvae are called maggots, but the term is not technical and often applied indifferently to fly larvae or insect larvae in general. The eyes and antennae of brachyceran larvae are reduced or absent, and the abdomen also lacks appendages such as cerci. This lack of features is an adaptation to food such as carrion, decaying detritus, or host tissues surrounding endoparasites. Nematoceran larvae generally have well-developed eyes and antennae, while those of Brachyceran larvae are reduced or modified.

Dipteran larvae have no jointed, “true legs”, but some dipteran larvae, such as species of Simuliidae, Tabanidae and Vermileonidae, have prolegs adapted to hold onto a substrate in flowing water, host tissues or prey.[66] The majority of dipterans are oviparous and lay batches of eggs, but some species are ovoviviparous, where the larvae starting development inside the eggs before they hatch or viviparous, the larvae hatching and maturing in the body of the mother before being externally deposited. These are found especially in groups that have larvae dependent on food sources that are short-lived or are accessible for brief periods. This is widespread in some families such as the Sarcophagidae. In Hylemya strigosa (Anthomyiidae) the larva moults to the second instar before hatching, and in Termitoxenia (Phoridae) females have incubation pouches, and a full developed third instar larva is deposited by the adult and it almost immediately pupates with no freely feeding larval stage. The tsetse fly (as well as other Glossinidae, Hippoboscidae, Nycteribidae and Streblidae) exhibits adenotrophic viviparity; a single fertilised egg is retained in the oviduct and the developing larva feeds on glandular secretions. When fully grown, the female finds a spot with soft soil and the larva works its way out of the oviduct, buries itself and pupates. Some flies like Lundstroemia parthenogenetica (Chironomidae) reproduce by thelytokous parthenogenesis, and some gall midges have larvae that can produce eggs (paedogenesis).

Pupa

The pupae take various forms. In some groups, particularly the Nematocera, the pupa is intermediate between the larval and adult form; these pupae are described as “obtect”, having the future appendages visible as structures that adhere to the pupal body. The outer surface of the pupa may be leathery and bear spines, respiratory features or locomotory paddles. In other groups, described as “coarctate”, the appendages are not visible. In these, the outer surface is a puparium, formed from the last larval skin, and the actual pupa is concealed within. When the adult insect is ready to emerge from this tough, desiccation-resistant capsule, it inflates a balloon-like structure on its head, and forces its way out

Adult

The adult stage is usually short, its function only to mate and lay eggs. The genitalia of male flies are rotated to a varying degree from the position found in other insects. In some flies, this is a temporary rotation during mating, but in others, it is a permanent torsion of the organs that occurs during the pupal stage. This torsion may lead to the anus being below the genitals, or, in the case of 360° torsion, to the sperm duct being wrapped around the gut and the external organs being in their usual position. When flies mate, the male initially flies on top of the female, facing in the same direction, but then turns around to face in the opposite direction. This forces the male to lie on his back for his genitalia to remain engaged with those of the female, or the torsion of the male genitals allows the male to mate while remaining upright. This leads to flies having more reproduction abilities than most insects, and much quicker. Flies occur in large populations due to their ability to mate effectively and quickly during the mating season

Ecology

As ubiquitous insects, dipterans play an important role at various trophic levels both as consumers and as prey. In some groups the larvae complete their development without feeding, and in others the adults do not feed. The larvae can be herbivores, scavengers, decomposers, predators or parasites, with the consumption of decaying organic matter being one of the most prevalent feeding behaviours. The fruit or detritus is consumed along with the associated micro-organisms, a sieve-like filter in the pharynx being used to concentrate the particles, while flesh-eating larvae have mouth-hooks to help shred their food. The larvae of some groups feed on or in the living tissues of plants and fungi, and some of these are serious pests of agricultural crops. Some aquatic larvae consume the films of algae that form underwater on rocks and plants. Many of the parasitoid larvae grow inside and eventually kill other arthropods, while parasitic larvae may attack vertebrate hosts.

Whereas many dipteran larvae are aquatic or live in enclosed terrestrial locations, the majority of adults live above ground and are capable of flight. Predominantly they feed on nectar or plant or animal exudates, such as honeydew, for which their lapping mouthparts are adapted. Some flies have functional mandibles that may be used for biting. The flies that feed on vertebrate blood have sharp stylets that pierce the skin, with some species having anticoagulant saliva that is regurgitated before absorbing the blood that flows; in this process, certain diseases can be transmitted. The bot flies (Oestridae) have evolved to parasitize mammals. Many species complete their life cycle inside the bodies of their hosts. The larvae of a few fly groups (Agromyzidae, Anthomyiidae, Cecidomyiidae) are capable of inducing plant galls. Some dipteran larvae are leaf-miners. The larvae of many brachyceran families are predaceous. In many dipteran groups, swarming is a feature of adult life, with clouds of insects gathering in certain locations; these insects are mostly males, and the swarm may serve the purpose of making their location more visible to females.

Most adult diptera have their mouthparts modified to sponge up fluid. The adults of many species of flies that feed on liquid food will regurgitate fluid in a behaviour termed as “bubbling” which has been thought to help the insects evaporate water and concentrate food or possibly to cool by evaporation. Some adult diptera are known for kleptoparasitism such as members of the Sarcophagidae. The miltogramminae are known as “satellite flies” for their habit of following wasps and stealing their stung prey or laying their eggs into them. Phorids, milichids and the genus Bengalia are known to steal food carried by ants. Adults of Ephydra hians forage underwater, and have special hydrophobic hairs that trap a bubble of air that lets them breathe underwater

Anti-predator adaptations

Flies are eaten by other animals at all stages of their development. The eggs and larvae are parasitised by other insects and are eaten by many creatures, some of which specialise in feeding on flies but most of which consume them as part of a mixed diet. Birds, bats, frogs, lizards, dragonflies and spiders are among the predators of flies. Many flies have evolved mimetic resemblances that aid their protection. Batesian mimicry is widespread with many hoverflies resembling bees and wasps, ants and some species of tephritid fruit fly resembling spiders. Some species of hoverfly are myrmecophilous, their young live and grow within the nests of ants. They are protected from the ants by imitating chemical odours given by ant colony members. Bombyliid bee flies such as Bombylius major are short-bodied, round, furry, and distinctly bee-like as they visit flowers for nectar, and are likely also Batesian mimics of bees.

In contrast, Drosophila subobscura, a species of fly in the genus Drosophila, lacks a category of hemocytes that are present in other studied species of Drosophila, leading to an inability to defend against parasitic attacks, a form of innate immunodeficiency

Annoyed by biting flies?  Try our 3000 volt electric fly swatter

Our extremely powerful 3000 volt electric fly swatter kills flies and insects instantly.  One powerful zap with this bug zapper leaves no mess!

Forget about smashing insects on the walls or scratching your skin raw when you are trying to get some downtime.  Our powerful 3000 volt electric fly swatter takes care of those pesky insects for you.

Whether you are inside your home or relaxing in outside, simply swing our electric fly swatter to get rid of annoying insects.  Our high voltage electric fly swatter takes care of this problem with a delightful sizzle.  The electric fly swatter also features a zapper at the end of the racket to help make swatting insects easy.

electric fly swatter

Special Sale only $24.95
Order in the next 29 minutes and get FREE SHIPPING!

order-button

Fast same day shipping – 2-3 day delivery

Perfect for killing fleas on dogs and cats

Our electric fly zapper and swatter make it easy to get rid of all those pesky dog fleas that make your pet uncomfortable.  Simply run the insect zapper over your dog’s fur and watch it kill those biting fleas.

For Camping

Camping can now be enjoyable with our electric bug zapper.  Just wave our insect zapper between yourself and the insects to instantly zap them.

Electric Fly Swatter Features

4″ zap strip on the end of mosquito bug zapper designed to zap bugs along door frames, sliding in small hard to reach areas and ceiling corners.

Built in LED bug zapper light to zap bugs and mosquitoes at night or in dark corners.

Bait tray attachment which you can set out pieces of meat or fruit to attract insects.

Included hand rope allowing you to hang the indoor bug zapper and automatically zap bugs for as long as you like or to tie around hand for extra grip.

Protective screens on both sides of the electrode to protect you from accidentally shocking your fingers.

Safety drain down system, shutting power down within 10 seconds, so you dont get shocked after electronic insect killer is turned off.

On / off button.  Press the button to activate net / release button to de-activate net.  The red light indicates the net is “hot” (on).

Extremely lightweight bug zapper racket

Takes 2 “D” batteries and gives off a 3000 volt charge

Our Electric Fly Swatter Kills the following insects on contact

Yellow Jackets
Hornets
Flies
Bed Bugs

Spiders
Fleas
Carpenter Bees
Wasps
Mosquitoes
Houseflies
Gnats
Black Bees
Horse Flies
Deer flies, and many more bugs and insects!

Get rid of pesky insects today!

Electric Fly Swatter Helpful Information

When an irritating insect is flying near you, just hit it, as you would a tennis ball.  There are dual large capacitors that hold 3000 volts of zapping power to kill insects but low amperage that allows alkaline batteries to power hundreds of hours of zapping time.

When a bee, hornet, horse fly etc. is buzzing back and forth near your body, put the zapper head near you, so the head is between you and the insect.  Swing out and away from your body.  If there are bees or flies hovering above your food, put the zapper head between the food and the bees and bring the head up quickly to zap them.

If the insect is in a horizontal corner between the ceiling and the wall, in a vertical corner where two walls meet, on a window, where it meets the frame or under an appliance or furniture, directly up on the ceiling or on the floor, just use the zapping area on the end of the head.  Move slowly until close then move the head quickly.  Slide the head lightly and quickly along the corners.

electric fly swatter

Special Sale only $24.95
Order in the next 29 minutes and get FREE SHIPPING!

order-button

Fast same day shipping – 2-3 day delivery

This is a tool, not a toy.  Keep out of reach of children under 8 years old.

Use inside or outside in dry weather.

ElectricFlySwatter.net

3000 Volt Fly SwatterVideosFAQ 

WholesaleTrack OrderContact UsCoupon Code